

Reduction methods for the Riccati equation, and the solution of the linear-quadratic regulator problem

V. Simoncini

Dipartimento di Matematica

Alma Mater Studiorum - Università di Bologna

valeria.simoncini@unibo.it

My contribution to Vladimir's scientific excellence or

How it all started...

Extended Krylov subspaces: approx. of the matrix square root and related functions

V Druskin, L Knizhnerman

SIAM Journal on Matrix Analysis and Applications 19 (3), 755-771. 1998

Google Scholar cit. 195

My contribution to Vladimir's scientific excellence or

How it all started...

Extended Krylov subspaces: approx. of the matrix square root and related functions

V Druskin, L Knizhnerman

SIAM Journal on Matrix Analysis and Applications 19 (3), 755-771. 1998 Google Scholar cit. 195

A new iterative method for solving large-scale Lyapunov matrix equations

V Simoncini

SIAM Journal on Scientific Computing 29 (3), 1268-1288. 2007 Google Scholar cit. 221

My contribution to Vladimir's scientific excellence or

How it all started...

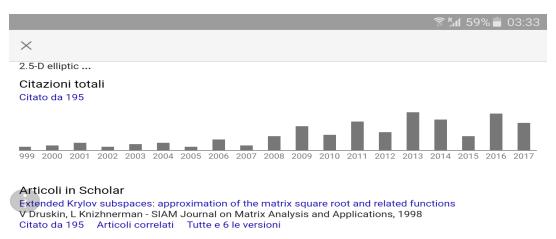
Extended Krylov subspaces: approx. of the matrix square root and related functions

V Druskin, L Knizhnerman

SIAM Journal on Matrix Analysis and Applications 19 (3), 755-771. 1998 Google Scholar cit. 195

A new iterative method for solving large-scale Lyapunov matrix equations V Simoncini

SIAM Journal on Scientific Computing 29 (3), 1268-1288. 2007 Google Scholar cit. 221



(average of 4 cit until 2007, then 9 (2008), 16 (2009), 10 (2010), 19 (2011), 25 (2013)....)

The problem

Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{s \times n}$, $p, s = \mathcal{O}(1)$

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

The problem

Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

with
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{s \times n}$, $p, s = \mathcal{O}(1)$

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

We focus on the large scale case: $n \gg 1000$

Different strategies

- (Inexact) Kleinman iteration (Newton-type method)
- Projection methods
- Invariant subspace iteration
- (Sparse) multilevel methods
- ...

Newton-Kleinman iteration

Assume A stable. Compute sequence $\{\mathbf{X}_k\}$ with $\mathbf{X}_k \to_{k \to \infty} \mathbf{X}$

$$(A - \mathbf{X}_k B B^{\top}) \mathbf{X}_{k+1} + \mathbf{X}_{k+1} (A^{\top} - B B^{\top} \mathbf{X}_k) + C^{\top} C + \mathbf{X}_k B B^{\top} \mathbf{X}_k = 0$$

Newton-Kleinman iteration

Assume A stable. Compute sequence $\{X_k\}$ with $X_k \to_{k \to \infty} X$

$$(A - \mathbf{X}_k B B^{\mathsf{T}}) \mathbf{X}_{k+1} + \mathbf{X}_{k+1} (A^{\mathsf{T}} - B B^{\mathsf{T}} \mathbf{X}_k) + C^{\mathsf{T}} C + \mathbf{X}_k B B^{\mathsf{T}} \mathbf{X}_k = 0$$

- 1: Given $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$ such that $\mathbf{X}_0 = \mathbf{X}_0^{\top}$, $A^{\top} BB^{\top}\mathbf{X}_0$ is stable
- 2: For $k = 0, 1, \ldots$, until convergence
- 3: Set $\mathcal{A}_k^{\top} = A^{\top} BB^{\top} \mathbf{X}_k$
- 4: Set $C_k^{\top} = [\mathbf{X}_k B, C^{\top}]$
- 5: Solve $\mathcal{A}_k \mathbf{X}_{k+1} + \mathbf{X}_{k+1} \mathcal{A}_k^{\top} + \mathcal{C}_k^{\top} \mathcal{C}_k = 0$

Newton-Kleinman iteration

Assume A stable. Compute sequence $\{X_k\}$ with $X_k \to_{k \to \infty} X$

$$(A - \mathbf{X}_k B B^{\mathsf{T}}) \mathbf{X}_{k+1} + \mathbf{X}_{k+1} (A^{\mathsf{T}} - B B^{\mathsf{T}} \mathbf{X}_k) + C^{\mathsf{T}} C + \mathbf{X}_k B B^{\mathsf{T}} \mathbf{X}_k = 0$$

- 1: Given $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$ such that $\mathbf{X}_0 = \mathbf{X}_0^{\top}$, $A^{\top} BB^{\top} \mathbf{X}_0$ is stable.
- 2: For $k = 0, 1, \ldots$, until convergence

3: Set
$$\mathcal{A}_k^{\top} = A^{\top} - BB^{\top} \mathbf{X}_k$$

4: Set
$$C_k^{\top} = [\mathbf{X}_k B, C^{\top}]$$

5: Solve
$$\mathcal{A}_k \mathbf{X}_{k+1} + \mathbf{X}_{k+1} \mathcal{A}_k^{\top} + \mathcal{C}_k^{\top} \mathcal{C}_k = 0$$

Critical issues:

- The full matrix X_k cannot be stored (sparse or low-rank approx)
- Need a computable stopping criterion
- ullet Each iteration k requires the solution of the Lyapunov equation

(Benner, Feitzinger, Hylla, Saak, Sachs, ...)

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

$$V_k^{\top} (A\mathbf{X}_k + \mathbf{X}_k A^{\top} - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C) V_k = 0$$

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

$$V_k^{\top} (A\mathbf{X}_k + \mathbf{X}_k A^{\top} - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C) V_k = 0$$

giving the reduced Riccati equation

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

 \mathbf{Y}_k is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009)

Given the orth basis V_k for an approximation space, determine

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

$$V_k^{\top} (A\mathbf{X}_k + \mathbf{X}_k A^{\top} - \mathbf{X}_k B B^{\top} \mathbf{X}_k + C^{\top} C) V_k = 0$$

giving the reduced Riccati equation

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

 \mathbf{Y}_k is the stabilizing solution (Jaimoukha-Kasenally 1994, Heyouni-Jbilou 2009) Key questions:

- Which approximation space?
- Is this meaningful from a Control Theory perspective?

Dynamical systems and the Riccati equation

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0 \\ y(t) = Cx(t), \end{cases}$$

 $u(t): {\sf control\ (input)\ vector}; \qquad y(t): {\sf output\ vector}$

x(t): state vector; x_0 : initial state

Dynamical systems and the Riccati equation

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

Time-invariant linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0 \\ y(t) = Cx(t), \end{cases}$$

 $u(t): {\sf control} \ ({\sf input}) \ {\sf vector}; \qquad y(t): {\sf output} \ {\sf vector}$

x(t): state vector; x_0 : initial state

Minimization problem for a Cost functional: (simplified form)

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_{0}^{\infty} \left(x(t)^{\top} C^{\top} C x(t) + u(t)^{\top} u(t) \right) dt$$

Dynamical systems and the Riccati equation

$$A\mathbf{X} + \mathbf{X}A^{\top} - \mathbf{X}BB^{\top}\mathbf{X} + C^{\top}C = 0$$

$$\inf_{u} \mathcal{J}(u, x_0) \qquad \mathcal{J}(u, x_0) := \int_{0}^{\infty} \left(x(t)^{\top} C^{\top} C x(t) + u(t)^{\top} u(t) \right) dt$$

THEOREM Let the pair (A,B) be stabilizable and (C,A) observable. Then there is a unique solution $\mathbf{X} \geq 0$ of the Riccati equation. Moreover,

i) For each x_0 there is a unique optimal control, and it is given by

$$u_*(t) = -B^{\mathsf{T}} \mathbf{X} \exp((A - BB^{\mathsf{T}} \mathbf{X})t) x_0 \quad \text{for} \quad t \ge 0$$

ii)
$$\mathcal{J}(u_*, x_0) = x_0^\top \mathbf{X} x_0$$
 for all $x_0 \in \mathbb{R}^n$

see, e.g., Lancaster & Rodman, 1995

Order reduction of dynamical systems by projection

Let $V_k \in \mathbb{R}^{n \times d_k}$ have orthonormal columns, $d_k \ll n$

Let
$$T_k = V_k^{\top} A V_k$$
, $B_k = V_k^{\top} B$, $C_k^{\top} = V_k^{\top} C^{\top}$

Reduced order dynamical system:

$$\begin{cases} \dot{\widehat{x}}(t) = T_k \widehat{x}(t) + B_k \widehat{u}(t), & \widehat{x}(0) = \widehat{x}_0 := V_k^{\top} x_0 \\ \widehat{y}(t) = C_k \widehat{x}(t) \end{cases}$$

$$x_k(t) = V_k \widehat{x}(t) \approx x(t)$$

Typical frameworks:

- Transfer function approximation
- Model reduction

The role of the projected Riccati equation

Consider again the reduced Riccati equation:

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

that is

$$T_k \mathbf{Y} + \mathbf{Y} T_k^{\top} - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \tag{*}$$

The role of the projected Riccati equation

Consider again the reduced Riccati equation:

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

that is

$$T_k \mathbf{Y} + \mathbf{Y} T_k^{\top} - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \tag{*}$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \widehat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

The role of the projected Riccati equation

Consider again the reduced Riccati equation:

$$(V_k^{\top} A V_k) \mathbf{Y} + \mathbf{Y} (V_k^{\top} A^{\top} V_k) - \mathbf{Y} (V_k^{\top} B B^{\top} V_k) \mathbf{Y} + (V_k^{\top} C^{\top}) (C V_k) = 0$$

that is

$$T_k \mathbf{Y} + \mathbf{Y} T_k^{\top} - \mathbf{Y} B_k B_k^{\top} \mathbf{Y} + C_k^{\top} C_k = 0 \tag{*}$$

THEOREM. Let the pair (T_k, B_k) be stabilizable and (C_k, T_k) observable. Then there is a unique solution $\mathbf{Y}_k \geq 0$ of (*) that for each \widehat{x}_0 gives the feedback optimal control

$$\widehat{u}_*(t) = -B_k^* \mathbf{Y}_k \exp((T_k - B_k B_k^* \mathbf{Y}_k) t) \widehat{x}_0, \quad t \ge 0$$

for the reduced system.

 \clubsuit If there exists a matrix K such that A-BK is passive, then the pair (T_k, B_k) is stabilizable.

Projected optimal control vs approximate control

* Our projected optimal control function:

$$\widehat{u}_*(t) = -B_k^\top \mathbf{Y}_k \exp((T_k - B_k B_k^\top \mathbf{Y}_k)t) \widehat{x}_0, \quad t \ge 0$$
 with $\mathbf{X}_k = V_k \mathbf{Y}_k V_k^\top$

* Commonly used approximate control function:

If $\widetilde{\mathbf{X}}$ is some approximation to \mathbf{X} , then

$$\widetilde{u}(t) := -B^{\top} \widetilde{\mathbf{X}} \widetilde{x}(t)$$

where $\widetilde{x}(t) := \exp((A - BB^{\top}\widetilde{\mathbf{X}})t)x_0$

$$\widehat{u}_* \neq \widetilde{u}$$

They induce different actions on the functional \mathcal{J} , even for $\widetilde{\mathbf{X}} = \mathbf{X}_k$

Projected optimal control vs approximate control

$$\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$$

Residual matrix: $R_k := A\mathbf{X}_k + \mathbf{X}_k A - \mathbf{X}_k BB^{\top} \mathbf{X}_k + C^{\top} C$

* Projected optimal control function:

$$\widehat{u}_*(t) = -B_k^{\top} \mathbf{Y}_k \exp((T_k - B_k B_k^{\top} \mathbf{Y}_k)t)$$

THEOREM. Assume that $A - BB^{\top}\mathbf{X}_k$ is stable and that $\widetilde{u}(t) :=$

$$-B^{\top}\mathbf{X}_k x(t)$$
 approx control. Then
$$|\mathcal{J}(\widetilde{u},x_0)-\widehat{\mathcal{J}}_k(\widehat{u}_*,\widehat{x}_0)|=\mathcal{E}_k,\quad \text{with}\quad \mathcal{E}_k\leq \frac{\|R_k\|}{2\alpha}x_0^{\top}x_0,$$

where $\alpha > 0$ is such that $||e^{(A-BB^{\top}\mathbf{X}_k)t}|| \leq e^{-\alpha t}$ for all $t \geq 0$.

Note: $|\mathcal{J}(\widetilde{u}, x_0) - \widehat{\mathcal{J}}_k(\widehat{u}_*, \widehat{x}_0)|$ is nonzero for $R_k \neq 0$

On the choice of approximation space

Approximate solution $\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$, with

$$(V_k^{\top} A V_k) \mathbf{Y}_k + \mathbf{Y}_k (V_k^{\top} A^{\top} V_k) - \mathbf{Y}_k (V_k^{\top} B B^{\top} V_k) \mathbf{Y}_k + (V_k^{\top} C^{\top}) (C V_k) = 0$$

Krylov-type subspaces: (extensively used in the linear case)

- $\mathcal{K}_k(A, C^\top) := \text{Range}([C^\top, AC^\top, \dots, A^{k-1}C^\top])$ (Polynomial)
- $\mathcal{EK}_k(A, C^\top) := \mathcal{K}_k(A, C^\top) + \mathcal{K}_k(A^{-1}, A^{-1}C^\top)$ (EKS, Rational)
- $\mathcal{RK}_k(A, C^{\top}, \mathbf{s}) :=$

Range(
$$[C^{\top}, (A - s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{k-1} (A - s_{j+1} I)^{-1} C^{\top}]$$
)

(RKS, Rational)

On the choice of approximation space

Approximate solution $\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$, with

$$(V_k^{\top} A V_k) \mathbf{Y}_k + \mathbf{Y}_k (V_k^{\top} A^{\top} V_k) - \mathbf{Y}_k (V_k^{\top} B B^{\top} V_k) \mathbf{Y}_k + (V_k^{\top} C^{\top}) (C V_k) = 0$$

Krylov-type subspaces: (extensively used in the linear case)

- $\mathcal{K}_k(A, C^\top) := \text{Range}([C^\top, AC^\top, \dots, A^{k-1}C^\top])$ (Polynomial)
- $\mathcal{EK}_k(A, C^\top) := \mathcal{K}_k(A, C^\top) + \mathcal{K}_k(A^{-1}, A^{-1}C^\top)$ (EKS, Rational)
- $\mathcal{RK}_k(A, C^\top, \mathbf{s}) :=$

Range(
$$[C^{\top}, (A - s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{\kappa-1} (A - s_{j+1} I)^{-1} C^{\top}]$$
)

(RKS, Rational)

* Matrix BB^{\top} **not** involved (nonlinear term!)

On the choice of approximation space

Approximate solution $\mathbf{X}_k = V_k \mathbf{Y}_k V_k^{\top}$, with

$$(V_k^{\top} A V_k) \mathbf{Y}_k + \mathbf{Y}_k (V_k^{\top} A^{\top} V_k) - \mathbf{Y}_k (V_k^{\top} B B^{\top} V_k) \mathbf{Y}_k + (V_k^{\top} C^{\top}) (C V_k) = 0$$

Krylov-type subspaces: (extensively used in the linear case)

- $\mathcal{K}_k(A, C^\top) := \text{Range}([C^\top, AC^\top, \dots, A^{k-1}C^\top])$ (Polynomial)
- $\mathcal{EK}_k(A, C^\top) := \mathcal{K}_k(A, C^\top) + \mathcal{K}_k(A^{-1}, A^{-1}C^\top)$ (EKS, Rational)
- $\mathcal{RK}_k(A, C^{\top}, \mathbf{s}) :=$ $\text{Range}([C^{\top}, (A s_2 I)^{-1} C^{\top}, \dots, \prod_{j=1}^{k-1} (A s_{j+1} I)^{-1} C^{\top}])$

(RKS, Rational)

- * Matrix BB^{\top} not involved (nonlinear term!)
- * Parameters s_j (adaptively) chosen in field of values of -A Druskin-Simoncini, 2011

Performance of solvers

Problem: A: 3D Laplace operator, B, C randn matrices, tol= 10^{-8} (n,p,s)=(125000,5,5)

	its	inner its	time	space dim	$rank(X_f)$
Newton $X_0 = 0$	15	5,, 5	808	100	95
GP-EKS	20		531	200	105
GP-RKS	25		524	125	105

(n, p, s) = (125000, 20, 20)

	its	inner its	time	space dim	$rank(X_f)$
Newton $X_0 = 0$	19	5,, 5	2332	400	346
GP-EKS	15		622	600	364
GP-RKS	20		720	400	358

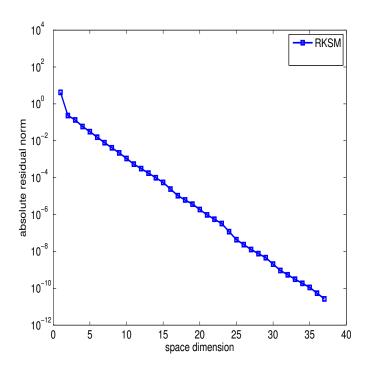
GP=Galerkin projection

(V.Simoncini & D.Szyld & M.Monsalve, 2014)

A numerical example on the role of BB^{\top}

Consider the 500×500 Toeplitz matrix

$$A = \text{toeplitz}(-1, \underline{2.5}, 1, 1, 1), \quad C = [1, -2, 1, -2, \dots], B = \mathbf{1}$$



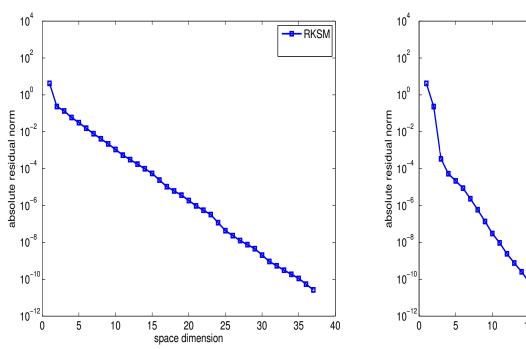
Parameter computation:

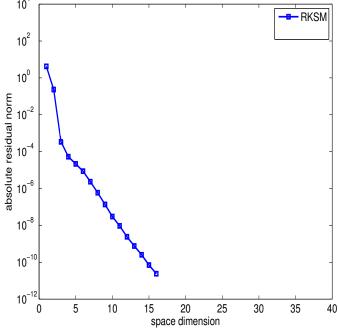
 \mathbf{Left} : adaptive RKS on A

A numerical example on the role of BB^{\top}

Consider the 500×500 Toeplitz matrix

$$A = \text{toeplitz}(-1, \underline{2.5}, 1, 1, 1), \quad C = [1, -2, 1, -2, \dots], B = \mathbf{1}$$





Parameter computation:

Left: adaptive RKS on A Right: adaptive RKS on $A - BB^{\top}\mathbf{X}_k$

(Lin & Simoncini 2015)

On the residual matrix and adaptive RKS

$$R_k := A\mathbf{X}_k + \mathbf{X}_k A - \mathbf{X}_k B B^{\mathsf{T}} \mathbf{X}_k + C^{\mathsf{T}} C$$

THEOREM. Let
$$\mathcal{T}_k = T_k - B_k B_k^{\top} \mathbf{Y}_k$$
. Then

THEOREM. Let
$$\mathcal{T}_k = T_k - B_k B_k^{\top} \mathbf{Y}_k$$
. Then
$$R_k = \widehat{R}_k V_k^{\top} + V_k \widehat{R}_k^{\top}, \qquad \text{with} \quad \widehat{R}_k = A V_k \mathbf{Y}_k + V_k \mathbf{Y}_k \mathcal{T}_k^{\top} + C^{\top}(C V_k)$$
 so that $\|R_k\|_F = \sqrt{2} \|\widehat{R}_k\|_F$

so that
$$\|R_k\|_F = \sqrt{2} \|\widehat{R}_k\|_F$$

At least formally:

 $\Rightarrow V_k \mathbf{Y}_k V_k^{\top}$ is a solution to the Riccati equation $(R_k = 0)$ if and only if $Z_k = V_k \mathbf{Y}_k$ is the solution to the Sylvester equation $(\widehat{R}_k = 0)$

On the residual matrix and adaptive RKS

$$R_k = \widehat{R}_k V_k^{\top} + V_k \widehat{R}_k^{\top}$$

Expression for the semi-residual \widehat{R}_k :

THEOREM. Assume $C^{\top} \in \mathbb{R}^n$, Range $(V_k) = \mathcal{RK}_k(A, C^{\top}, \mathbf{s})$. Assume that $\mathcal{T}_k = T_k - B_k B_k^{\top} \mathbf{Y}_k$ is diagonalizable. Then

$$\widehat{R}_k = \psi_{k,T_k}(A)C^{\top}CV_k(\psi_{k,T_k}(-\mathcal{T}_k^{\top}))^{-1}.$$

where

$$\psi_{k,T_k}(z) = \frac{\det(zI - T_k)}{\prod_{j=1}^k (z - s_j)}$$

(see also Beckermann 2011 for the linear case)

On the choice of the next parameters s_{k+1}

$$\widehat{R}_k = \psi_{k,T_k}(A)C^\top CV_k(\psi_{k,T_k}(-\mathcal{T}_k^\top))^{-1}.$$
 with $\psi_{k,T_k}(z) = \frac{\det(zI - T_k)}{\prod_{j=1}^k (z - s_j)}$

 \star Greedy strategy: Next shift should make $(\psi_{k,T_k}(-\mathcal{T}_k^\top))^{-1}$ smaller

Determine for which s in the spectral region of \mathcal{T}_k the quantity $(\psi_{k,T_k}(-s))^{-1}$ is large, and add a root there

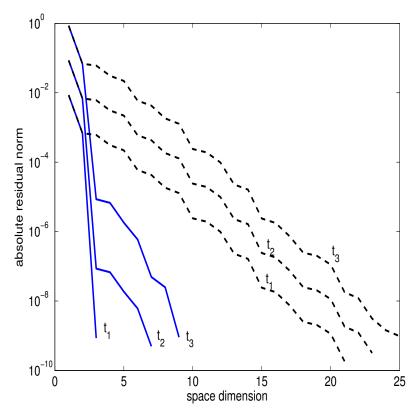
$$s_{k+1} = \arg\max_{s \in \partial \mathbb{S}_k} \left| \frac{1}{\psi_{k,T_k}(s)} \right|$$

 \mathbb{S}_k region enclosing the eigenvalues of $-\mathcal{T}_k = -(T_k - B_k B_k^{\top} \mathbf{Y}_k)$

(This argument is new also for linear equations)

Selection of s_{k+1} in RKS. An example

A: 900×900 2D Laplacian, $B = t \mathbf{1}$ with $t_j = 5 \cdot 10^{-j}$, C = [1, -2, 1, -2, 1, -2, ...]



RKS convergence with and without modified shift selection as t varies

Solid curves: use of \mathcal{T}_k Dashed curves: use of T_k

Further results not presented but relevant

- ullet Stabilization properties of the approx solution ${f X}_k$
- Accuracy tracking as the approximation space grows
- Interpretation via invariant subspace approximation

(V.Simoncini, 2016)

Further results not presented but relevant

- ullet Stabilization properties of the approx solution ${f X}_k$
- Accuracy tracking as the approximation space grows
- Interpretation via invariant subspace approximation

(V.Simoncini, 2016)

Wrap-up

- Projection-type methods fill the gap between MOR and Riccati equation
- Clearer role of the non-linear term during the projection

Outlook

- ♠ Petrov-Galerkin projection (à la Balanced truncation) (work in progress, with A. Alla, Florida State Univ.)
- ♠ Projected Differential Riccati equations (see, e.g., Koskela & Mena, tr 2017)
- ♠ Parameterized Algebraic Riccati equations (see, e.g., Schmidt & Haasdonk, tr 2017)

Outlook

- ♠ Petrov-Galerkin projection (à la Balanced truncation) (work in progress, with A. Alla, Florida State Univ.)
- Projected Differential Riccati equations (see, e.g., Koskela & Mena, tr 2017)
- ♠ Parameterized Algebraic Riccati equations (see, e.g., Schmidt & Haasdonk, tr 2017)

REFERENCES

- V. Simoncini, Daniel B. Szyld and Marlliny Monsalve, On two numerical methods for the solution of large-scale algebraic Riccati equations IMA Journal of Numerical Analysis, (2014)
- Yiding Lin and V. Simoncini, A new subspace iteration method for the algebraic Riccati equation Numerical Linear Algebra w/Appl., (2015)
- V.Simoncini, Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations SIAM J. Matrix Anal.Appl, (2016)
- V. Simoncini, Computational methods for linear matrix equations SIAM Review, (2016)